Test Intel Core Ultra 5 245K. Nie tego chcieli gracze!

Test Intel Core Ultra 5 245K. Nie tego chcieli gracze!

Dziś mamy kolejną premierę procesorów w tym roku i naturalnie mowa o rodzinie Arrow Lake, której najsłabszy przedstawiciel to Intel Core Ultra 5 245K, jednocześnie będący bohaterem tego testu. Mamy więc do czynienia z następcą modelu Core i5-14600K, który podobnie jak poprzednik, jest CPU wyposażonym w 14 rdzeni. Z kolei tym, co odróżnia Arrow Lake od Alder oraz Raptor Lake, jest nowa podstawka LGA 1851, co oznacza konieczność zmiany płyty głównej, gdzie póki co mamy tylko chipset Z890, o którym więcej będzie w nadchodzących tekstach. Przed debiutem nowej serii niebiescy zapowiadali topowe osiągi wielordzeniowe, wysoką wydajność w grach oraz świetną efektywność energetyczną. Ale, czy te przechwałki mają odzwierciedlenie w rzeczywistości, wykażą rzecz jasna testy praktyczne, do których przejdziemy niebawem.

Spis treści:

Jeżeli chodzi o cenę, Intel Core Ultra 5 245K został przez producenta wyceniony na 309 dolarów amerykańskich, co przy obecnym kursie i po doliczeniu VAT powinno przełożyć się na ok. 1513 zł. Przy czym, w momencie pisania tekstu recenzowany model był już widoczny w cennikach niektórych sklepów, z kosztem zakupu zaczynającym się od 1479 zł, zatem jest odrobinę taniej względem MSRP. Niemniej nie można przemilczeć faktu, że Core i5-14600K dało się w analogicznym okresie kupić nawet za 1069 zł. Ta różnica nie jest zaskoczeniem, biorąc pod uwagę, że porównujemy starszy produkt, który zdążył od debiutu zejść z ceny, ze świeżym procesorem dopiero wchodzącym do sprzedaży, ale fakt pozostaje faktem. Poza tym nie należy zapominać o koszcie zakupu płyty głównej, jako że przyzwoitej jakości konstrukcję na Z790 można dostać za ok. 660 zł, gdzie dla porównania najtańsze modele na Z890 zaczynają się od około 980 zł. Innymi słowy, tanio na pewno nie jest. Jeśli jednak cena nie stanowi dla Was problemu, wszystkie procesory Arrow Lake znajdziecie w sklepie x-kom.

Arrow Lake to nowa architektura rdzeni oraz modułowa budowa procesora, zamiast dotychczasowej monolitycznej. Zobaczmy, jak te zmiany wpływają na wydajność.

Test Intel Core Ultra 5 245K. Udany następca Core i5-14600K?

 Test Core Ultra 7 258V vs Ryzen AI 9 HX 370. Starcie laptopowych CPU najnowszej generacji

Krótki komentarz odnośnie recenzowanego procesora

Przechodząc do technikaliów, Arrow Lake, tak samo jak Meteor Lake i Lunar Lake, korzysta z budowy modułowej. Na kompletny CPU składają się następujące jądra krzemowe (w nawiasie używana litografia): obliczeniowe (TSMC N3), z dużymi i małymi rdzeniami, graficzne (TSMC N5P), z iGPU generacji Xe i z 512 jednostkami cieniującymi, a także układy SOC i I/O (TSMC N6). Za sprawą tych ostatnich, procesor wspiera pamięć DDR5 o zegarze oficjalnie do 6400 MHz, udostępnia 20 linii PCIe 5.0 (16 dla GPU i cztery dla nośnika M.2) oraz 12 4.0 (osiem dla chipsetu i cztery dla drugiego dysku NVMe), oraz posiada zintegrowany kontroler Thunderbolt 4 i NPU, czyli akcelerator AI o wydajności 13 TOPS (notabene lokalny Microsoft Copilot+ wymaga aż 40 TOPS). Odnośnie rdzeni, duże bazują na architekturze Lion Cove i dla Core Ultra 5 245K jest ich sześć, zaś małe na Skymont i w tym przypadku mamy ich osiem. Choć łączna liczba wątków, które procesor może wykonywać jednocześnie, spadła w porównaniu z Raptor Lake, gdyż duże rdzenie utraciły SMT, stąd jest to po prostu suma liczby dużych oraz małych rdzeni. Współczynnik TDP pozostał na niezmienionym poziomie, w dalszym ciągu wynosząc 125 W, jednak jak wiadomo, z rzeczywistym poborem prądu ten parametr od dłuższego czasu często niewiele ma wspólnego.

Test Intel Core Ultra 5 245K: charakterystyka procesora

Główny bohater niniejszego tekstu to co prawda Intel Core Ultra 5 245K, niemniej z oczywistych względów przy takich materiałach nie sposób uniknąć porównań z innymi modelami tej firmy czy czerwoną konkurencją. Dlatego też postanowiłem zebrać w tym miejscu komplet danych technicznych opisujących sprawdzone w boju procesory - tak, by dostarczyć Wam jak najwięcej użytecznych informacji. Poniżej odnajdziecie zarówno podstawowe wartości liczbowe, pokroju liczby rdzeni i wątków, zegarów czy współczynnika TDP, jak i bardziej praktyczne spostrzeżenia typu rzeczywiste taktowania w zależności od obciążenia i towarzyszące im napięcia.

Charakterystyka porównywanych procesorów AMD i Intel
Producent AMD AMD Intel Intel Intel
Model Ryzen 5 7600(X) Ryzen 5 9600X Core i5-12400F Core i5-12600K Core i5-13400F
Generacja Raphael Granite Ridge Alder Lake Alder Lake Raptor Lake (?)
Architektura Zen 4 Zen 5 Golden Cove
Gracemont
Golden Cove
Gracemont
Golden Cove
Gracemont
Proces technologiczny 5 + 6 nm 4 + 6 nm Intel 7 (10 nm) Intel 7 (10 nm) Intel 7 (10 nm)
Socket AM5 AM5 LGA 1700 LGA 1700 LGA 1700
Zintegrowane GPU AMD Graphics
(2 CU)
2200 MHz
AMD Graphics
(2 CU)
2200 MHz
Nie UHD Graphics
770 (32 EU)
1450 MHz
Nie
Konfiguracja PCIe 5.0 x16 + x8 5.0 x16 + x8 5.0 x16 + 4.0 x4 5.0 x16 + 4.0 x4 5.0 x16 + 4.0 x4
Liczba rdzeni 6 + SMT 6 + SMT 6 + SMT 6 + SMT (Golden)
4 (Gracemont)
6 + SMT (Golden)
4 (Gracemont)
Liczba bloków CCX 1 1 n.d. n.d. n.d.
Maksymalny zegar 5,15 GHz (7600)
5,45 GHz (7600X)
5,45 GHz 4,4 GHz 4,9 GHz 4,6 GHz
Cache L2 6x1 MB 6x1 MB 6x1,25 MB 6x1,25 MB (Golden)
2 MB (Gracemont)
6x1,25 MB (Golden)
2 MB (Gracemont)
Cache L3 32 MB 32 MB 18 MB 20 MB 20 MB
Kontroler RAM DDR5-5200 DDR5-5600 DDR4-3200
DDR5-4800
DDR4-3200
DDR5-4800
DDR4-3200
DDR5-4800
Mnożnik odblokowany odblokowany zablokowany odblokowany zablokowany
Współczynnik TDP 65 W (7600)
105 W (7600X)
65 W 65 W 125 W 65 W
Fabryczne chłodzenie Nie Nie Tak Nie Tak
Cena (x-kom na dzień 21.10.2024) 849 zł (7600)
939 zł (7600X)
1099 zł 499 zł 849 zł 699 zł
Rzeczywisty zegar MT 5,0 (7600)
5,3 GHz (7600X)
5,1 GHz 3,45 GHz 4,5/3,6 GHz 3,35/2,7 GHz (65 W)
4,1/3,3 GHz (148 W)
Napięcie MT 1,25 V (7600)
1,35 V (7600X)
1,15 V 0,95 V 1,15 V 0,95 V (65 W)
1,05 V (148 W)
Rzeczywisty zegar ST 5,15 GHz (7600)
5,45 GHz (7600X)
5,45 GHz 4,4 GHz 4,9 GHz 4,6 GHz
Napięcie ST 1,25 V (7600)
1,35 V (7600X)
1,35 V 1,15 V 1,3 V 1,2 V
Charakterystyka porównywanych procesorów AMD i Intel
Producent AMD Intel Intel Intel Intel
Model Ryzen 7 7800X3D Core Ultra 5 245K Core i5-14600K Core i7-13700K Core i9-12900K
Generacja Raphael Arrow Lake Raptor Lake Raptor Lake Alder Lake
Architektura Zen 4 Lion Cove
Skymont
Raptor Cove
Gracemont
Raptor Cove
Gracemont
Golden Cove
Gracemont
Proces technologiczny 5 + 6 nm 3 + 5 + 6 nm Intel 7 (10 nm) Intel 7 (10 nm) Intel 7 (10 nm)
Socket AM5 LGA 1851 LGA 1700 LGA 1700 LGA 1700
Zintegrowane GPU AMD Graphics
(2 CU)
2200 MHz
Intel Graphics
(64 EU)
1900 MHz
UHD Graphics
770 (32 EU)
1550 MHz
UHD Graphics
770 (32 EU)
1600 MHz
UHD Graphics
770 (32 EU)
1550 MHz
Konfiguracja PCIe 5.0 x16 + x8 5.0 x16 + x4 + 4.0 x4 5.0 x16 + 4.0 x4 5.0 x16 + 4.0 x4 5.0 x16 + 4.0 x4
Liczba rdzeni 8 + SMT 6 (Lion)
8 (Skymont)
6 + SMT (Raptor)
8 (Gracemont)
8 + SMT (Raptor)
8 (Gracemont)
8 + SMT (Golden)
8 (Gracemont)
Liczba bloków CCX 1 n.d. n.d. n.d. n.d.
Maksymalny zegar 5,05 GHz 5,2 GHz 5,3 GHz 5,4 GHz 5,2 GHz
Cache L2 8x1 MB 6x3 MB (Lion)
2x4 MB (Skymont)
6x2 MB (Raptor)
2x4 MB (Gracemont)
8x2 MB (Raptor)
2x4 MB (Gracemont)
8x1,25 MB (Golden)
2x2 MB (Gracemont)
Cache L3 96 MB 24 MB 24 MB 30 MB 30 MB
Kontroler RAM DDR5-5200 DDR5-6400 DDR4-3200
DDR5-5600
DDR4-3200
DDR5-5600
DDR4-3200
DDR5-4800
Mnożnik odblokowany odblokowany odblokowany odblokowany odblokowany
Współczynnik TDP 120 W 125 W 125 W 125 W 125 W
Fabryczne chłodzenie Nie Nie Nie Nie Nie
Cena (x-kom na dzień 21.10.2024) 2079 zł 1499 zł 1069 zł 1499 zł 1719 zł
Rzeczywisty zegar MT 4,7 GHz 4,95/4,55 GHz 4,75/3,8 GHz (125 W)
5,3/4,0 GHz (181 W)
4,45/3,5 GHz (125 W)
5,3/4,2 GHz (253 W)
4,2/3,3 GHz (125 W)
4,9/3,7 GHz (241 W)
Napięcie MT 1,05 V 1,1 V 1,05 V (125 W)
1,2 V (181 W)
1,0 V (125 W)
1,2 V (253 W)
1,0 V (125 W)
1,2 V (241 W)
Rzeczywisty zegar ST 5,05 GHz 5,2 GHz 5,3 GHz 5,4 GHz 5,2 GHz
Napięcie ST 1,2 V 1,15 V 1,25 V 1,3 V 1,35 V
Charakterystyka porównywanych procesorów AMD i Intel
Producent AMD AMD AMD AMD Intel
Model Ryzen 7 7700(X) Ryzen 9 7900 Ryzen 9 7900X Ryzen 9 7950X Core i7-12700K
Generacja Raphael Raphael Raphael Raphael Alder Lake
Architektura Zen 4 Zen 4 Zen 4 Zen 4 Golden Cove
Gracemont
Proces technologiczny 5 + 6 nm 5 + 6 nm 5 + 6 nm 5 + 6 nm Intel 7 (10 nm)
Socket AM5 AM5 AM5 AM5 LGA 1700
Zintegrowane GPU AMD Graphics
(2 CU)
2200 MHz
AMD Graphics
(2 CU)
2200 MHz
AMD Graphics
(2 CU)
2200 MHz
AMD Graphics
(2 CU)
2200 MHz
UHD Graphics
770 (32 EU)
1500 MHz
Konfiguracja PCIe 5.0 x16 + x8 5.0 x16 + x8 5.0 x16 + x8 5.0 x16 + x8 5.0 x16 + 4.0 x4
Liczba rdzeni 8 + SMT 12 + SMT 12 + SMT 16 + SMT 8 + SMT (Golden)
4 (Gracemont)
Liczba bloków CCX 1 2 2 2 n.d.
Maksymalny zegar 5,35 GHz (7700)
5,55 GHz (7700X)
5,45 GHz 5,7 GHz 5,85 GHz 5,0 GHz
Cache L2 8x1 MB 12x1 MB 12x1 MB 16x1 MB 8x1,25 MB (Golden)
2 MB (Gracemont)
Cache L3 32 MB 2x32 MB 2x32 MB 2x32 MB 25 MB
Kontroler RAM DDR5-5200 DDR5-5200 DDR5-5200 DDR5-5200 DDR4-3200
DDR5-4800
Mnożnik odblokowany odblokowany odblokowany odblokowany odblokowany
Współczynnik TDP 65 W (7700)
105 W (7700X)
65 W 170 W 170 W 125 W
Fabryczne chłodzenie Nie Nie Nie Nie Nie
Cena (x-kom na dzień 21.10.2024) 1329 zł (7700)
1319 zł (7700X)
1549 zł 1599 zł 2199 zł 1249 zł
Rzeczywisty zegar MT 5,0 GHz (7700)
5,15 GHz (7700X)
4,5 GHz 5,1 GHz (230 W)
5,0 GHz (142 W)
5,15 GHz (230 W)
4,85 GHz (142 W)
4,45/3,45 GHz (125 W)
4,7/3,6 GHz (190 W)
Napięcie MT 1,15 V (7700)
1,3 V (7700X)
1,0 V 1,3 V (230 W)
1,2 V (142 W)
1,25 V (230 W)
1,1 V (142 W)
1,05 V (125 W)
1,1 V (190 W)
Rzeczywisty zegar ST 5,35 GHz (7700)
5,5 GHz (7700X)
5,45 GHz 5,5 GHz 5,5 GHz 4,9 GHz
Napięcie ST 1,3 V (7700)
1,45 V (7700X)
1,3 V 1,45 V 1,45 V 1,25 V
Charakterystyka porównywanych procesorów AMD i Intel
Producent AMD Intel Intel Intel Intel
Model Ryzen 9 9900X Core Ultra 7 265K Core Ultra 9 285K Core i7-14700K Core i9-14900K
Generacja Granite Ridge Arrow Lake Arrow Lake Raptor Lake Raptor Lake
Architektura Zen 5 Lion Cove
Skymont
Lion Cove
Skymont
Raptor Cove
Gracemont
Raptor Cove
Gracemont
Proces technologiczny 4 + 6 nm 3 + 5 + 6 nm 3 + 5 + 6 nm Intel 7 (10 nm) Intel 7 (10 nm)
Socket AM5 LGA 1851 LGA 1851 LGA 1700 LGA 1700
Zintegrowane GPU AMD Graphics
(2 CU)
2200 MHz
Intel Graphics
(64 EU)
2000 MHz
Intel Graphics
(64 EU)
2000 MHz
UHD Graphics
770 (32 EU)
1600 MHz
UHD Graphics
770 (32 EU)
1650 MHz
Konfiguracja PCIe 5.0 x16 + x8 5.0 x16 + x4 + 4.0 x4 5.0 x16 + x4 + 4.0 x4 5.0 x16 + 4.0 x4 5.0 x16 + 4.0 x4
Liczba rdzeni 12 + SMT 8 (Lion)
12 (Skymont)
8 (Lion)
16 (Skymont)
8 + SMT (Raptor)
12 (Gracemont)
8 + SMT (Raptor)
16 (Gracemont)
Liczba bloków CCX 2 n.d. n.d. n.d. n.d.
Maksymalny zegar 5,65 GHz 5,5 GHz 5,7 GHz 5,6 GHz 6,0 GHz
Cache L2 12x1 MB 8x3 MB (Lion)
3x4 MB (Skymont)
8x3 MB (Lion)
4x4 MB (Skymont)
8x2 MB (Raptor)
3x4 MB (Gracemont)
8x2 MB (Raptor)
4x4 MB (Gracemont)
Cache L3 2x32 MB 30 MB 36 MB 33 MB 36 MB
Kontroler RAM DDR5-5600 DDR5-6400 DDR5-6400 DDR4-3200
DDR5-5600
DDR4-3200
DDR5-5600
Mnożnik odblokowany odblokowany odblokowany odblokowany odblokowany
Współczynnik TDP 120 W 125 W 125 W 125 W 125 W
Fabryczne chłodzenie Nie Nie Nie Nie Nie
Cena (x-kom na dzień 21.10.2024) b.d. 1999 zł 2899 zł 1689 zł 2149 zł
Rzeczywisty zegar MT 5,0 GHz 5,2/4,6 GHz 5,3/4,6 GHz 4,3/3,55 GHz (125 W)
5,35/4,25 GHz (253 W)
4,2/3,45 GHz (125 W)
5,25/4,2 GHz (253 W)
Napięcie MT 1,2 V 1,1 V 1,15 V 1,0 V (125 W)
1,25 V (253 W)
0,95 V (125 W)
1,2 V (253 W)
Rzeczywisty zegar ST 5,6 GHz 5,5 GHz 5,7 GHz 5,6 GHz 6,0 GHz
Napięcie ST 1,4 V 1,3 V 1,25 V 1,35 V 1,4 V

Test Intel Core Ultra 5 245K: metodologia

Wszystkie testy zostały wykonane pod kontrolą systemu operacyjnego Windows 11 64-bit 23H2 oraz sterowników GeForce Game Ready 552.22, podczas rzeczywistej rozgrywki. Do pomiaru liczby klatek użyto programu Fraps w wersji 3.5.99 - w tym dla DirectX 12 (jedyna niedogodność pod tym API to brak OSD). Wyniki zamieszczone na wykresach są średnią arytmetyczną rezultatów z trzech odrębnych przebiegów, z kolei rozdzielczość zegara czasu rzeczywistego była ustawiona na sztywną wartość 0,5 ms.

Nastawy pamięci prezentują się następująco:

  • DDR5-6000 MHz CL 30-36-36-66 1T (Ryzen 7000 i Ryzen 9000),
  • DDR5-7000 MHz CL 34-42-42-76 2T (Alder Lake, Raptor Lake i Arrow Lake).

Limity mocy były ustawione na następujących poziomach:

  • AMD Ryzen 5 2600: PPT 88 W,
  • AMD Ryzen 5 7600: PPT 88 W,
  • AMD Ryzen 5 7600X: PPT 142 W,
  • AMD Ryzen 5 9600X: PPT 88 W,
  • AMD Ryzen 7 1700X: PPT 128 W,
  • AMD Ryzen 7 7700: PPT 88 W,
  • AMD Ryzen 7 7700X: PPT 142 W,
  • AMD Ryzen 7 7800X3D: PPT 162 W,
  • AMD Ryzen 9 7900: PPT 88 W,
  • AMD Ryzen 9 7900X: PPT 230 W lub PPT 142 W,
  • AMD Ryzen 9 7950X: PPT 230 W lub PPT 142 W,
  • AMD Ryzen 9 9900X: PPT 162 W,
  • Intel Core Ultra 5 245K: PL1 = PL2 = 125 W,
  • Intel Core Ultra 7 265K: PL1 = PL2 = 250 W,
  • Intel Core Ultra 9 285K: PL1 = PL2 = 250 W,
  • Intel Core i5-12400F: PL1 = PL2 = 65 W,
  • Intel Core i5-12600K: PL1 = PL2 = 125 W,
  • Intel Core i5-13400F: PL1 = PL2 = 65 W lub PL1 = PL2 = 148 W,
  • Intel Core i5-14600K: PL1 = PL2 = 125 W lub PL1 = PL2 = 181 W,
  • Intel Core i7-12700K: PL1 = PL2 = 125 W lub PL1 = PL2 = 190 W,
  • Intel Core i7-13700K: PL1 = PL2 = 125 W lub PL1 = PL2 = 253 W,
  • Intel Core i7-14700K: PL1 = PL2 = 125 W lub PL1 = PL2 = 253 W,
  • Intel Core i9-12900K: PL1 = PL2 = 125 W lub PL1 = PL2 = 241 W,
  • Intel Core i9-14900K: PL1 = PL2 = 125 W lub PL1 = PL2 = 253 W,
  • Intel Core i9-14900KS: PL1 = PL2 = 150 W lub PL1 = PL2 = 253 W.

Uwagi dodatkowe do testów:

  • dla Alder Lake i Raptor Lake tryb pracy kontrolera pamięci RAM to Gear 2 dla DDR5 i Gear 1 dla DDR4,
  • Ryzeny 7000 i Ryzeny 9000 pracowały z taktowaniem Infinity Fabric wynoszącym 2100 MHz i częstotliwością kontrolera synchroniczną z RAM,
  • dla Arrow Lake tryb pracy kontrolera pamięci RAM to Gear 2,
  • we wszystkich przypadkach zoptymalizowałem timingi dalszych rzędów,
  • ze względu na niewystarczającą optymalizację zrównoważonego planu zasilania (dotyczy także Windowsa 11 24H2), Arrow Lake były testowane po zmianie na wysoką wydajność.

Platforma testowa

Test Intel Core Ultra 5 245K. Udany następca Core i5-14600K? ASUS ROG MAXIMUS Z890 HERO
Test Intel Core Ultra 5 245K. Udany następca Core i5-14600K? Patriot Viper Venom RGB 2x16 GB DDR5-7400 CL36
Test Intel Core Ultra 5 245K. Udany następca Core i5-14600K? ASUS ROG STRIX GeForce RTX 4080 OC
Test Intel Core Ultra 5 245K. Udany następca Core i5-14600K? Patriot Viper VP4100 1 TB
Test Intel Core Ultra 5 245K. Udany następca Core i5-14600K? SilentiumPC Supremo M1 Platinum 700 W
Test Intel Core Ultra 5 245K. Udany następca Core i5-14600K? Antec Twelve Hundred V3
Test Intel Core Ultra 5 245K. Udany następca Core i5-14600K? MSI MEG CORELIQUID S360

Test Intel Core Ultra 5 245K: wydajność

Część praktyczną rozpoczynamy od emulacji konsol i testów przeglądarkowych. Względem poprzedniej procedury, rozbudowana została pierwsza z wymienionych kategorii, poprzez dołączenie programów RPCS3 oraz Xenia, które pozwalają uruchamiać gry odpowiednio dla PlayStation 3 oraz Xbox 360. W obu przypadkach do testów służy Red Dead Redemption, a pomiary odbywają się na samym początku kampanii fabularnej, gdyż to bardzo wymagająca lokalizacja, idealnie nadająca się do sprawdzania osiągów procesorów.

Dolphin

RPCS3

Xenia Canary

Mozilla Firefox

Dolphin

RPCS3

Xenia Canary

Mozilla Firefox

Kompresja danych, kompilacja, obróbka zdjęć

Kolejne testy obejmują kompresję danych, kompilację oraz prostą obróbkę zdjęć. Idąc po kolei, pomiary w 7-Zip zostały znacząco zmodyfikowane, ponieważ wariant z jednym i wieloma plikami o podobnym łącznym rozmiarze w zasadzie niczego nie wnosił. Zamiast tego mamy jeden mały plik i jeden duży, który pozwala w większym stopniu wykorzystać wielowątkowość, a dodatkowo wprowadziłem test dekompresji. Co do drugiej grupy, zaktualizowałem kod źródłowy kodera x265 do najświeższego wydania, które do kompilacji asemblera korzysta z narzędzia NASM, wyraźnie wolniejszego od Yasm, przez co cały proces jeszcze bardziej bazuje na wydajności pojedynczego wątku. Pozostałe dwa projekty są natomiast w pełni wielordzeniowe, a jeżeli chodzi o obróbkę zdjęć, uzupełniłem testy o scenariusze z dodatkowymi przekształceniami (zmiana rozdzielczości i korekta kolorów).

Konwersja audio/wideo

W dziale konwersji audio oraz wideo niewiele się zmieniło od czasu poprzedniej procedury. Jedyna modyfikacja to dodatkowe testy w HandBrake, polegające na kodowaniu dwóch plików naraz. To scenariusz warty zbadania, gdyż konwersja tylko jednego materiału źródłowego nie pozwala wykorzystać pełni potencjału najwydajniejszych CPU z wieloma rdzeniami, nawet gdy jest on w rozdzielczości 4K.

foobar2000: LAME MP3

foobar2000: FLAC

foobar2000: Monkey's Audio

HandBrake: x264 4K

HandBrake: x265 4K

foobar2000: LAME MP3

foobar2000: FLAC

foobar2000: Monkey's Audio

HandBrake: x264 4K

HandBrake: x265 4K

Grafika 3D

Testy obejmujące operacje związane z grafiką 3D także przetrwały z grubsza w niezmienionej formie. W wypadku programu Blender dokonałem wyłącznie drobną korektę dla operacji eksportu, zastępując format Wavefront przez bardziej wymagający obliczeniowo glTF 2.0. Ponadto wyeliminowałem test nakładania modyfikatora Subsurf, gdyż w najnowszych wydaniach pakietu Blender zadanie to wykonuje się praktycznie błyskawicznie, przez co przestało być dobrym scenariuszem do porównywania osiągów CPU.

Rendering

Odnośnie renderingu, główna zmiana to wykorzystanie najnowszej wersji benchmarka Cinebench - 2024. Ponadto zaktualizowałem programy 3ds Max, V-Ray i Blender, a uwagę warto poświęcić pierwszym dwóm z wymienionych. Mianowicie najświeższe wydania 3ds Max oraz V-Ray renderują tę samą scenę co poprzednio wyraźnie dłużej, tak więc właśnie to jest powodem wzrostu czasów w porównaniu do starszych testów.

3ds Max

Blender

Cinebench 2024

3ds Max

Blender

Cinebench 2024

Obliczenia, symulacje, szyfrowanie

Obliczenia i symulacje to niezmiennie testy fizyki z pakietu 3DMark oraz wybrane projekty na platformie BOINC. Z kolei do badania wydajności szyfrowania wciąż służy program VeraCrypt, który posiada wbudowany benchmark, w którym ustawiam rozmiar bufora na 1 GB. Przy czym teraz podaję tylko wyniki dla pojedynczych algorytmów, bez pomiarów mieszanych, które na dobrą sprawę były wyłącznie ciekawostką.

Gry (A Plague Tale: Requiem, AC: Mirage, Call of Duty: Modern Warfare 3)

Pomiary w grze A Plague Tale: Requiem wykonuję w rozdziale Co pozostało, gdzie bohaterowie muszą przedostać się przez obszar "zablokowany" przez szczurzą armię. To wysoce wymagająca lokalizacja, która w dodatku dobrze (jak na tę grę) korzysta z wielowątkowości. W Assassin's Creed: Mirage wybrany scenariusz polega na przebieżce ulicami Kolistego Miasta, w mojej ocenie najbardziej obciążającej procesor części mapy. Natomiast w Call of Duty: Modern Warfare 3 zdecydowałem się postawić na misję Cenny towar, jako że to jedno z niewielu miejsc, które są wymagające i powtarzalne (wahania FPS w zakresie nawet kilkudziesięciu klatek podczas patrzenia w jeden punkt to norma w większości innych lokalizacji).

A Plague Tale: Requiem

Assassin's Creed: Mirage

Call of Duty: Modern Warfare 3

A Plague Tale: Requiem

Assassin's Creed: Mirage

Call of Duty: Modern Warfare 3

Gry (Counter-Strike 2, Cyberpunk 2077, Dragon's Dogma 2)

Counter-Strike 2 to dość ciekawy przypadek, jako że mapa Ancient jest jedyna w swoim rodzaju, tzn. jej obszar z wodą jest ekstremalnie wymagający jak na standardy tej produkcji, co widzimy dla wartości minimalnych. Z tego powodu główny scenariusz to Inferno, tym bardziej, że jest nienagannie powtarzalny, czego o Ancient powiedzieć nie można. Z kolei Cyberpunk 2077 i Dragon's Dogma 2 to produkcje, które dużo bardziej dają się procesorom we znaki, obydwie testowane też z włączonym śledzeniem promieni, choć w ich przypadku nie ma to dużego wpływu na liczbę FPS.

Counter-Strike 2

Cyberpunk 2077

Dragon's Dogma 2

Counter-Strike 2

Cyberpunk 2077

Dragon's Dogma 2

Gry (Dying Light 2, Dziedzictwo Hogwartu, Far Cry 6)

Wszystkie gry z tej sekcji obsługują śledzenie promieni, stąd znajdziecie dodatkowe testy z włączonym RT. Wpływ tej opcji na wydajność jest największy dla Dziedzictwa Hogwartu, umiarkowany dla Dying Light 2 oraz niewielki w przypadku Far Cry 6. Skupiając się jeszcze przez chwilę na polskim tytule, miejsce testowe zostało dobrane w taki sposób, aby lokalizacja była wymagająca tak dla niskiego, jak i wysokiego mnożnika LOD. To istotne, gdyż trafiają się miejsca, które stanowią wyzwanie dla procesorów przy umiarkowanej wartości LOD, ale niemal nie reagują na jej zwiększanie, podczas gdy gdzie indziej spadek jest znaczny, stąd właściwy wybór scenariusza jest kluczowy.

Dying Light 2

Dziedzictwo Hogwartu

Far Cry 6

Dying Light 2

Dziedzictwo Hogwartu

Far Cry 6

Gry (Dead Island 2, Spider-Man: Miles Morales, SW Jedi: Ocalały)

Spider-Man: Miles Morales oraz STAR WARS Jedi: Ocalały to kolejne produkcje, w których aktywacja RT powoduje znaczny wzrost wymagań w stosunku do CPU. Niemniej druga z tych gier ma inną charakterystykę od Dziedzictwa Hogwartu, choć obie bazują na silniku Unreal Engine 4. Mianowicie dla STAR WARS Jedi: Ocalały użycie procesora po włączeniu RT wzrasta, a nie spada (tytuł jest wtedy w stanie spożytkować ~16 wątków). Z kolei w Dead Island 2 testy odbywają się w ramach nowego dodatku SoLA, którego akcja rozgrywa się na dużej, otwartej mapie, a to optymalny scenariusz do porównywania wydajności CPU.

Dead Island 2

Spider-Man: Miles Morales

STAR WARS Jedi: Ocalały

Dead Island 2

Spider-Man: Miles Morales

STAR WARS Jedi: Ocalały

Gry (Starfield, Wiedźmin 3: Dziki Gon NG, World of Tanks)

Starfield to w pewnym sensie gra legendarna, bo z pewnością na taki tytuł zasługuje w gronie optymalizacyjnych gniotów. Ale co ciekawe, z najnowszymi poprawkami od strony CPU to całkiem sensowna produkcja, o wysokich, ale jednak nie zabójczych wymaganiach, oraz dobrze radząca sobie z wielowątkowością. Jej przeciwieństwem jest Wiedźmin 3: Dziki Gon w wersji Next-Gen, która niespecjalnie potrafi wykorzystać potencjał wielu rdzeni, przez co bardziej bazuje na mocy pojedynczego wątku. Natomiast w World of Tanks zmieniłem scenariusz testowy, jako że wcześniej używana powtórka przestała działać po zaktualizowaniu gry, jednak nie ma powodów do obaw, bo nowe miejsce także jest całkiem wymagające jak na standardy tego tytułu.

Starfield

Wiedźmin 3: Dziki Gon NG

World of Tanks

Starfield

Wiedźmin 3: Dziki Gon NG

World of Tanks

Gry (średnie osiągi)

W tej sekcji zamieszczone są wykresy, które prezentują średnią wydajność porównywanych procesorów, w trzech wariantach: dla wszystkich testów, wyłącznie dla pomiarów bez śledzenia promieni, a także tylko dla scenariuszy z aktywnym RT. Jak za chwilę zobaczycie, wybrana opcja ma pewien wpływ na zależności między poszczególnymi architekturami oraz modelami, w szczególności tymi od różnych producentów.

Ważne: Wartości widoczne na wykresach zostały policzone na podstawie relacji procentowych w poszczególnych testach, a nie np. poprzez zsumowanie liczby kl./s, co jest metodą niepoprawną zarówno z matematycznego, jak i praktycznego punktu widzenia, jako że takie podejście powoduje większą wagę gier, w których procesory osiągają wyższy FPS, zaś intuicyjnie wiemy, że przewaga w takim wariancie jest mniej istotna niż różnica w tytułach, gdzie wydajność jest niższa.

Warunki testu temperatur Intel Core Ultra 5 245K

Wszystkie pomiary zostały przeprowadzane przy wykorzystaniu niezmienionej platformy testowej. Podczas testów Intel Core Ultra 5 245K temperatura w pomieszczeniu wahała się w zakresie 23-24 °C, do wykonania odczytów posłużyło oprogramowanie HWiNFO64 w wersji 8.13-5560. Nad odpowiednimi warunkami pracy procesora czuwał zestaw chłodzenia wodnego MSI MEG CORELIQUID S360, zaś użyta pasta to Noctua NT-H1, charakteryzująca się brakiem potrzeby wygrzewania, tj. osiągająca optymalne wyniki tuż po nałożeniu. Aplikacji dokonałem sposobem "X", który zapewnia poprawne rozprowadzenie materiału termoprzewodzącego.

Warunki testu poboru prądu Intel Core Ultra 5 245K

Do zbadania zużycia energii procesora Intel Core Ultra 5 245K wykorzystano watomierz Voltcraft Energy Logger 4000F, charakteryzujący się klasą dokładności na poziomie ±1% oraz pracą w trybie True RMS. Ta ostatnia cecha zapewnia pomiar rzeczywistej wartości skutecznej, czyli faktycznie pobieranej przez urządzenie, zamiast średniej podawanej przez tanie mierniki. Napięcie w sieci elektrycznej to oczywiście 230 V, natomiast częstotliwość 50 Hz. Wszelkie wartości na wykresach odnoszą się do kompletnej platformy testowej. Z uwagi na wysoką klasę sprzętu pomiarowego, w obu przypadkach wahania wskazań okazały się niewielkie, w zasadzie nieprzekraczające kilku W. Dlatego też jako odczyt właściwy przyjmuję wartość najczęściej pojawiającą się na wyświetlaczu.

Test Intel Core Ultra 5 245K: konkluzje

Zanim przejdę do wyników, aby nie było wątpliwości, Core Ultra 5 245K przetestowałem tylko z limitem mocy 125 W (równym TDP), gdyż był wystarczający, by osiągnąć pełną wydajność - łącznie z wielowątkowością. Zaczynając od osiągów jednego rdzenia, to chyba najmocniejszy punkt omawianego procesora. Użyłem tego słowa nie przez przypadek, gdyż w temacie ST co prawda najczęściej pokonuje Core i5-14600K, ale zdarza mu się polec w takim porównaniu, a np. z Ryzenem 5 9600X prawie zawsze przegrywa. Innymi słowy, jest nieźle, ale bez fajerwerków. Podobnie sprawa wygląda, jeśli chodzi o wydajność wielordzeniową, gdzie Core i5-14600K (nawet z PL 125 W) też potrafi być górą, co ma miejsce w kompresji plików, kompilacji UE5 w Visual Studio czy renderingu w Blender. Na ogół jednak Core Ultra 5 245K plasuje się w pobliżu poprzednika z limitem mocy 181 W, zatem jakiś postęp mimo wszystko jest, chociaż marny. Prawdziwy dramat zaczyna się jednak dopiero w grach, gdzie testowany model po uśrednieniu rezultatów notuje ok. 5% przewagę nad... Core i5-12600K. Za to od Core i5-14600K jest o ok. 11% wolniejszy i składają się na to niezwykle nierówne osiągi, gdyż Core Ultra 5 245K potrafi zarówno wypaść solidnie (patrz Spider-Man: Miles Morales), jak i tragicznie (np. A Plague Tale: Requiem i Cyberpunk 2077).

Core Ultra 5 245K to procesor wyraźnie droższy od poprzednika, niewiele szybszy w programach i słabszy w grach. Mimo niższego poboru, nie tak miało to wyglądać.

Test Intel Core Ultra 5 245K. Udany następca Core i5-14600K?

 Test Intel Core i9-14900KS. Jeszcze bardziej wyżyłowana 14. generacja

Komentarz co do testów w grach, pozostałe aspekty użytkowe i ocena końcowa

Kontynuując kwestię rozrywki, choć uzyskane wyniki mogą budzić podejrzenia, zdecydowałem się je opublikować, ponieważ bardzo gruntownie zbadałem ten temat, w poszukiwaniu ew. błędów powodujących tak słabe rezultaty. Mianowicie spróbowałem zaktualizować Windowsa 11 do wydania 24H2, co jednak nie przyniosło żadnej poprawy. Ponadto porównałem wydajność w grach na trzech płytach głównych, od ASRocka, ASUS-a i MSI, ale to także nie wykazało, aby ten komponent był przyczyną. Idąc dalej, podjąłem również próbę żonglowania sterownikami GPU, tak najnowszymi, jak i starszymi, do spółki z dodatkowymi pomysłami typu wyłączenie Resizable BAR, gdyż opcja ta potrafi wyraźnie spowolnić CPU w niektórych produkcjach, ale okazało się, że platforma LGA 1851 reaguje na nią jak każda inna. Jedyna rzecz, na jaką udało się wpaść, to brak należytej optymalizacji zrównoważonego planu zasilania pod Arrow Lake, łącznie z Windowsem 11 24H2, gdzie powodował on np. bardzo słabe wyniki w Dragon's Dogma 2 oraz teście opóźnienia RAM w AIDA64. Dlatego też wszystkie pomiary zostały wykonane po przełączeniu na plan wysokiej wydajności i uważam, że zaprezentowane rezultaty są poprawne, choć oczywiście nie wykluczam ew. późniejszej aktualizacji, gdyby udało się odkryć coś więcej, w końcu nie ma ludzi nieomylnych.

Test Intel Core Ultra 5 245K. Udany następca Core i5-14600K?

Tyle o wydajności, a co do pozostałych aspektów użytkowych, Arrow Lake przynosi wyraźną poprawę, jeśli chodzi o pobór prądu, który jest niższy od Raptor Lake i względnie konkurencyjny w porównaniu do AMD. Zaś w temacie temperatur jest naprawdę dobrze, tj. do schłodzenia nowych procesorów wystarczy solidny cooler powietrzny. Na plus należy zapisać także to, że Intel wreszcie wyposażył swoje CPU w linie PCIe 5.0 dla dysku M.2, choć stało się to później od AMD i mamy ich jedynie cztery. Za to wbudowany akcelerator AI jest czymś, czego Ryzeny 9000 nie mają wcale, niemniej nie jest na tyle mocny, aby zapewnić lokalne przyspieszanie Copilot+. Reasumując, rodzina Arrow Lake przynosi skromną poprawę względem Raptor Lake w kwestii wydajności ST/MT, spadek zużycia energii i temperatur oraz wbudowane NPU, choć z drugiej strony wyraźnie słabiej wypada w grach (przegrywając nawet z Ryzenami 7000!) oraz jest sporo droższa. Rachunek zysków i strat w dużej mierze pozostawiam do indywidualnej oceny, ale ponieważ jest to recenzja, moje zdanie również musi się pojawić, a jest ono takie, że Core Ultra 5 245K otrzymuje ocenę końcową 6/10, bez wyróżnień. Dlaczego? Dlatego, że według mnie większość Czytelników będzie interesować nic innego jak osiągi w grach, ergo to istotny aspekt, z którym jest kiepsko, a dokładając drożyznę, sądzę że wspomniane wyżej zalety nie są w stanie zrekompensować tej wady i ogólnie skromnego postępu.

 

Intel Core Ultra 5 245K

Ocena procesora Intel Core Ultra 5 245K

Intel Core Ultra 5 245K - opinia

Intel Core Ultra 5 245K - plusy

  • Całkiem solidne rezultaty w aplikacjach
  • Dość wysoka moc pojedynczego rdzenia
  • Bardzo niskie temperatury rdzeni
  • Zauważalny spadek poboru prądu
  • Wreszcie dodatkowe linie PCIe 5.0 dla dysku M.2
  • Zintegrowany akcelerator AI i kontroler Thunderbolt 4

Intel Core Ultra 5 245K - minusy

  • Słabiutka wydajność w grach
  • W ogólności postęp nie jest porywający
  • Tylko cztery linie PCIe 5.0 dla NVMe
  • Wysoka cena procesora oraz całej platformy

Cena Intel Core Ultra 5 245K (na dzień publikacji): od 1479 zł

Gwarancja: 36 miesięcy

Test Intel Core Ultra 5 245K. Udany następca Core i5-14600K?

 

Płytę główną do testów dostarczył:

Test Intel Core Ultra 5 245K. Udany następca Core i5-14600K?

Procesor do testów dostarczył:

Test Intel Core Ultra 5 245K. Udany następca Core i5-14600K?

Obserwuj nas w Google News

Pokaż / Dodaj komentarze do: Test Intel Core Ultra 5 245K. Nie tego chcieli gracze!

 0
Kolejny proponowany artykuł
Kolejny proponowany artykuł
Kolejny proponowany artykuł
Kolejny proponowany artykuł